Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 13: 876555, 2022.
Article in English | MEDLINE | ID: covidwho-1809408

ABSTRACT

SARS-CoV-2 infects cells via binding to ACE2 and TMPRSS2, which allows the virus to fuse with host cells. The viral RNA is detected in the placenta of SARS-CoV-2-infected pregnant women and infection is associated with adverse pregnancy complications. Therefore, we hypothesize that SARS-CoV-2 infection of placental cells induces pro-inflammatory cytokine release to contribute to placental dysfunction and impaired pregnancy outcomes. First, expression of ACE2 and TMPRSS2 was measured by qPCR in human primary cultured term cytotrophoblasts (CTBs), syncytiotrophoblast (STBs), term and first trimester decidual cells (TDCs and FTDCs, respectively), endometrial stromal cells (HESCs) as well as trophoblast cell lines HTR8, JEG3, placental microvascular endothelial cells (PMVECs) and endometrial endothelial cells (HEECs). Later, cultured HTR8, JEG3, PMVECs and HEECs were treated with 10, 100, 1000 ng/ml of recombinant (rh-) SARS-CoV-2 S-protein ± 10 ng/ml rh-IFNγ. Pro-inflammatory cytokines IL-1ß, 6 and 8, chemokines CCL2, CCL5, CXCL9 and CXCL10 as well as tissue factor (F3), the primary initiator of the extrinsic coagulation cascade, were measured by qPCR as well as secreted IL-6 and IL-8 levels were measured by ELISA. Immunohistochemical staining for SARS-CoV-2 spike protein was performed in placental specimens from SARS-CoV-2-positive and normal pregnancies. ACE2 levels were significantly higher in CTBs and STBs vs. TDCs, FTDCs and HESCs, while TMPRSS2 levels were not detected in TDCs, FTDCs and HESCs. HTR8 and JEG3 express ACE2 and TMPRSS2, while PMVECs and HEECs express only ACE2, but not TMPRSS2. rh-S-protein increased proinflammatory cytokines and chemokines levels in both trophoblast and endothelial cells, whereas rh-S-protein only elevated F3 levels in endothelial cells. rh-IFNγ ± rh-S-protein augments expression of cytokines and chemokines in trophoblast and endothelial cells. Elevated F3 expression by rh-IFNγ ± S-protein was observed only in PMVECs. In placental specimens from SARS-CoV-2-infected mothers, endothelial cells displayed higher immunoreactivity against spike protein. These findings indicated that SARS-CoV-2 infection in placental cells: 1) induces pro-inflammatory cytokine and chemokine release, which may contribute to the cytokine storm observed in severely infected pregnant women and related placental dysfunction; and 2) elevates F3 expression that may trigger systemic or placental thrombosis.


Subject(s)
COVID-19 , Placenta Diseases , Pregnancy Complications, Infectious , Angiotensin-Converting Enzyme 2 , Cell Line, Tumor , Cytokines/metabolism , Endothelial Cells/pathology , Female , Humans , Placenta/metabolism , Placenta Diseases/pathology , Pregnancy , Pregnant Women , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Thromboplastin/metabolism
2.
Clin Infect Dis ; 73(9): e3027-e3032, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500994

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), can be detected in respiratory samples by real-time reverse transcriptase polymerase chain reaction (RT-PCR) or other molecular methods. Accessibility of diagnostic testing for COVID-19 has been limited by intermittent shortages of supplies required for testing, including flocked nasopharyngeal (FLNP) swabs. METHODS: We developed a 3-dimensional printed nasopharyngeal (3DP) swab as a replacement of the FLNP swab. The performance of 3DP and FLNP swabs were compared in a clinical trial of symptomatic patients at 3 clinical sites (n = 291) using 3 SARS-CoV-2 emergency use authorization tests: a modified version of the Centers for Disease Control and Prevention (CDC) RT-PCR Diagnostic Panel and 2 commercial automated formats, Roche Cobas and NeuMoDx. RESULTS: The cycle threshold-C(t)-values from the gene targets and the RNase P gene control in the CDC assay showed no significant differences between swabs for both gene targets (P = .152 and P = .092), with the RNase P target performing significantly better in the 3DP swabs (P < .001). The C(t) values showed no significant differences between swabs for both viral gene targets in the Roche cobas assay (P = .05 and P = .05) as well as the NeuMoDx assay (P = .401 and P = .484). The overall clinical correlation of COVID-19 diagnosis between all methods was 95.88% (Kappa 0.901). CONCLUSIONS: The 3DP swabs were equivalent to standard FLNP in 3 testing platforms for SARS-CoV-2. Given the need for widespread testing, 3DP swabs printed onsite are an alternate to FLNP that can rapidly scale in response to acute needs when supply chain disruptions affect availability of collection kits.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , Nasopharynx , Printing, Three-Dimensional , SARS-CoV-2 , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL